AUTHOR	Laing, Joan; And Others
TITLE	Relationships between ACT Test Scores and High School Courses.
PUB DATE	Apr 87
NOTE	40p.: Paper presented at the Annual Convention of the
	American Association for Counseling and Development
	(New Orleans, LA, April 21-25, 1987).
PUB TYPE	Reports - Research/Technical (143) --
	Speeches/Conference Papers (150)
EDRS PRICE	MF01/PC02 Plus Postage.
DESCRIPTORS	*Academic Achievement; *College Bound Students;
	College Entrance Examinations; *College Preparation;
	*Educational Counseling; High Schools; High School
	Seniors; Natural Sciences; *Secondary School
	Curriculum; Secondary School Mathematics;
	*Standardized Tests
IDENTIFIERS	*American College Testing Program

ABSTRACT
Following publication of "A Nation at Risk," several states passed legislation increasing high school graduation and college entrance requirements. This study was conducted to determine whether there is a relationship between the number of courses a student takes in a subject-matter area and the student's score on the corresponding American College Testing (ACT) Assessment test. The ACT Assessment consists of four academic tests (English, mathematics, social studies, natural sciences), self-reported high school grades, the Student Profile Section, and the ACT Interest Inventory. Data were obtained from a random sample of 31,419 high school seniors who took the ACT in October 1985. The results indicated that, on the average, students who had taken more coursework in the college preparatory curriculum areas of English, mathematics, natural science, and social studies earned higher standard scores on the corresponding ACT test. This relationship was most apparent in the areas of mathematics and natural scienes. Higher mean test scores were obtained when more courses in the relevant area were taken, regardless of gender, racial/ethnic group, or rank in class. Future research should examine the relationship between ACT scores and college grades. (NB)

Relationships Between ACT Tesc Scores
 and High School Courses

Joan Laing

Harold Eagen
James Maxey

Othice of Educational Research ED/JCATIONAL RESOURCES INFORMATION
*This document has been reproduced as tficeived from the person or organization originating it
C Minor changes have been made to improve reproduction quality.

- Points of view or opinions stated in this document do not necessanly represent official OERI position or policy.
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN, GRANTED BY
 INFORMATION CENTER (ERIC).'

ABSTRACT

The 1980 s have been a pericd of renewed concern about the adequacy of high school students' academic preparation for postsecondary education and employment. This study was conducted to determine whether there is a relationship between the number of courses taken in a subject-matter area and the score obtained on the corresponding ACT Assessment test.

Lt was-found that, on the average, students-who had taken more coursework scored higher on the relevant test. This relationship was most apparent in the areas of mathemarics and natural sciences.

Previous research has shown a relationship between ACT scores and college grades. Thus, it is hypothesized that the students who have taken more high school coursework will earn higher grades as college students. As data become available, further studies are- planned to explore this hypothesis.

Intuitively, one would expect that increased academic coursework in an drea would result in increased achievement in that area. Such achievement might be reflected in higher standardized test scores, more effective performance in advanced courses in the area, or improved job performance. In reality, the picture is often less clear. Such factors as the ability levels of individual students and the quality (as distinct from the quantity) of courses taken also have an effect on future academic performance.

Questions about whether increased coursework results in the desired academic outcomes are not new, of course. However, these issues are attracting particular attention in the United.-States at present because of renewed concern about the adequacy of high school studenes' academic preparation for postsecondary education and employment. This concern has resulced, in many cases, in an increase in the amount of coursework required to graduate... from..high school..and/or to ..be accepted into a postsecondary educational institution.

Changing Requirements.-Wright-(1985-)-reporced on-typi-cal high school acadeaic -requirements.in-the $1981-82$ school year. At that time, the typical high school student averaged 5 hours of credit slasses per day. The average number of credit hours required for graduation was 19.8 , although the average number of , credit hours actually. completed by graduates-was 21.7. Subject-area averages were: English/language arts, 3.6; social studies/history, 2.6; mathematics, 1.7; science, 1.6.

During the early 1980^{\prime} s, considerable concern was expressed that high school graduates in the United States were not adequately prepared for higher education or for employment in a complex technological society. Furthermore, it was claimed that United States gradurtes were less well-prepared academically than those in other countries. In particular, it was noted that
students' typical exposure to mathematics and science courses was less than adequate (A Nation At Risk, 1983). A high school program consisting of 4 years of English; 3 years of mathematics; 3 years of science; 3 years of social studies; and $1 / 2$ year of computer science was recommended for all students seeking a diploma (not just the college-iound). In addition, 2 years of foreign language were recommended for college-bound students.

Following publication of A Nation at Risk, a number of states passed legislation .. increasing -high school. graduation, and college entrance requirements. A recent study by Bartell. and Noble (1986), sampling from the ACT Assessment-tested population, indicated that there has been an increase (from 1982 to 1986) in the percentage of college-bound students completing the so-called "core curriculum." Percentage increases were: Four or more years of English, 9%; three or more years of mathematics, 13%; three or more years of social studies, 5%; and three or more years of natural sciences, 13%. Increases were greatest for students from lower-income families, for students attending smaller high schools; and Eor students_from smaller commuities.
.......... While- there seems...to be agreement ..that.high school graduation requirements are becoming. imore rigorous, not all educators see this change as being unambiguously positive. This may seem surprising-as Orlans (1986) says, "Who would oppose either motherhood or higher standards?"--but many authors have cautioned that the new requirements may actually have a negative effect on the academic achievement of some students. There is concern that, C..especially.... for . ..minority.... and/oreducationally - - disadvantaged students, increasing the standards for high school graduation may simply increase the dropout rate. For some students, the new requirements may not serve as an
opportunity for greater learning, but as an insurmountable hurdle. Some educators fear a return to a policy of secondary education as a privilege for the academically elite, rather than as a right for all students (Orlans, 1986; Brandt \& Dronka, 1985).

Coursework and Achievement. The relationship of coursework to various measures of achievement has, of course, been studied before. For example, a landmark study was conducted in the 1930^{\prime} s as a reaction to what were then considered overly inflexible academic requirements. for. college-bound students (Adventure in American Education, 1942)... Participating colleges agreed to accept applicants from certain secondary schools, even though the students did not meet certain course requirements; in exchange, the secondary schools involved were to initiate alternative programs that they felt would better prepare their students for college and later life. It was hypothesized that the experimental group would "turn out to be just regular college students like anybody else, achieving approximately the same degree of academic success in proportion to. their abilities, engaging in the same student activtities to about ..the. same extent, encouncering...the..-same.academic...and personal problems and coming out with similar solutions." .(Preface, Volume 4, p. Xx) This was, in fact, how the experimental group fared as college students. It must be recalled, of course, that the experimental students did not simply take less coursework; they were all involved in other structured learning tasks as a substitute for some of the traditional coursework.

Turning to more recent research, Alexander-\&-Cook-(1982) reported that their findings indicate that, while curriculum effects of different academic "tracks" are apparent, they may simply reflect differences in earlier academic experiences. "...(M) any of the influences upon senior high school outcomes are already well established before students even enter high school (p. 638)."
 scudents.

The ACT Assessment Program Database. The ACT Assessment is a comprehensive evaluation, guidance, and placement service for students and educators involved in the transition from high school to college. It consists of four academic tots, self-reported high school grades, the Student Profile Section (SPS), and the ACT Interest Inventory. Approximately a million students take the ACT Assessment each year.

The four academic tests of the ACT Assessment measure abilities in the subject areas craditionally identified.with college and high school programs: English, mathematics, social•studies, "and natural'sciences. The English Usage test measures scudents' understanding and use of the basic elements of correct and effective writing; the Mathematics Usage test, their mathematical reasoning and problem-solving ability; the Social Studies Reading test, the problem-solving skills required in the social. studies; the Natural Sciences Reading test, the critical reasoning and problem-solving skills required in the natural-sciences-ACT-test scores are reported on a standard scale that ranges from 1 to 36 . The arithmetic average of the scores on these four tests is the ACT Composite score, which is often used as a measure of overall educational development.

Another component of the ACT Assessment is the Student Profile Section (SPS), completed at registration. Through the SPS, students provide information about their backgrounds, extracurricular accomplishments, special academic needs, housing plans, financial needs, planned major, and career plans.

In the fall of 1985, ACT introduced the collection of expanded high school course/grade information. The High School Course/Grade Information section collects basic information about the courses a student has caken or plans to take in high school, and the grades he/she has earned.

This section collects informarion concerning 30 secondary-level courses. The particular courses listed include those that customarily form the basis of a college preparatory (academic or "core") high school curriculum and are frequencly required or recommended for admission to postsecondary institutions. These 30 courses were.selected to give a relatively complete picture of a student's basic academic preparation. English

English taken during the 9 th grade English taken during the 10 th grade English taken during the 11 th grade English taken during the 12 th grade Speech

Mathematics

```
First-year Algebra_ (Algebra I, not pre-Algebra)
Second-year Algebra (Algebra II)
Geometry
Trigonometry
Calculus (not pre-Calculus)
.Other Math beyond Algebra II
Compucer Marh/Computer Science
```


Natural Science

General/Physical/Earch Science
Biology
Chemistry
Physics

Social Studies

U.S. History (American History)

World History/World Civilization
Other History.(European, State, etc.)
American Government/Civics
Economics (Consumer Economics)
Grography
Psychology

Language

Spanish
French
German
Ocher Language
Arts
Art (painting, etc.)
Music (vocal or instrumental)
Drama/Theater (if taken as a course)
… .-..... For.e. each of the -30 high school courses listed, the student is asked to indicate whether he/she has taken the course or plans to take it prior to graduation from high school. If the student has taken a course for: a full term (semester, trimester, etc.), he/she is asked to indicate the final grade
received. (Grades are to be rounded to the closest letter grade and numeric grades converted to the corresponding letter grade.) If a full term of the course has not been completed, no grades are to be reported.

With the introduction of the collection of this expanded course-grade information in the fall of 1985 , it became possible to examine the ACT scores of students with differential preparation in the four subject areas represented in the $A C T$ tests. It was expected that, as these tests are curriculum-based, scudents who took more..courses in an area would obtain higher scores on the corresponding test.

Sample. A 20% random sample of seniors taking the ACT on the October 1985 test date was selected. This 20% sample included 37,826 scudents. Because of a variety of missing data, the final sample included 31,419 individuals (13,512 males and 17,907 females). Their mean scores on the ACT Assessment were:-......English,....18.6;...Mathematics., 17.5; Socia1_ Studies, 17.8; Natural Sciences, 21.5; Composite, 19.0.

Analyses...... Means . nd ..standard..deviations on .the..appropriate ACT test were calculated for $-s t u d e n t s$ who -reported that they had-completed one, two, three (etc.) - courses in a subject area. - The maximum-possible number of courses varied by subject area: English, 5; mathematics, 7; social studies, 7; natural sciences, 4 .

Regression analyses, described in the Results section, were also performed.

Overall findings. For the cotal group, adding a course in an area resulted in a higher mean score on the corresponding $A C T$ test, with one exception: a sixth or seventh course in social studies was not associated with higher ACT Social Studies Reading test scores (Figure 1). In some cases, the score

FIGURE 1 ABOUT HERE
differences were quite substantial....For instance,.. the mean Mathematics test score was 11.29 for students reporting completion of 2 years of mathematics and 18.66 for those reporting completion of 4 years. Means and standard deviations for all preparation levels are shown in Table Al (in the Appendix).

It is conceivable that the observed positive relationship between the number of courses taken in a subject area and the curresponding ACT test score is not a causal one, but merely reflects the influence of other variables (such as ability). - To investigate this possibility, four regression analyses -were performed, using the following_three variables as predictors or the relevant ACT test. score: number of. courses.taken in the area; rank in class; and high school grade point average..... In each case, all rhree variables contributed significantly to predicting the AC'L. test score. Furthermore, in the areas of mathematics and natural sciences, the number of courses taken contributed more than either rank in class or high school verage. Complete data from...these regression analyses...are shown...in Tables A2-A5 (in the Appendix). As a further check, regression analyses were performed separately for various income levels and racial/ethnic groups, with generally similar results. Tables showing these analyses are available from the senior author.

Mean ACT Scores by Number of Courges Taken in Relegant Content Area, by Area (Total Group)

Mean \quad Years T								
Score	1	2	3	4	5	6	7	

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

13

> Ln addition co the regression analyses, summary tables were prepared separately by sex, racial/ethnic group, and rank in class, These are described below.
> Sex. For the purposes of this study, a college preparatory curriculum was defined as 4 or more courses in English and mathematics (including computer math/computer science) and 3 or more years of social studies and natural science. By the beginning of their senior year, most of the ACT-tested seniors in the sample had already completed this curriculum. In the subject areas of mathematics and natural sciences, however, males were more likely than females to have completed the designared amount of coursework (see Table l).

Table 1

Percencages of Students Completing College Preparatory Curriculum, by Sex

4 or more	-4 -or more	-3 or-more	3 or more
English	Marhematics	Social Studies	Natural Science

	-		龶	Social S	Natural
Male .-.	87\%	\cdots	61%	$\cdots 79 \%$	61\%
Female...	90\%		52\%	--. 79%	52\%

Tables A6-A9 (in che Appendix) provide a detailed breakdown of mean test scores by sex and number of years of coursework. These rables show chat, overall, males obtained higher mean scores than..females on every cest except English. There is, however, a tendency for these differences to be less in the areas of mathematics and natural sciences when the amount of coursework is held constant. For instance, the overall mean score of males on the mathematics test exceeded that of females by 2.7 standard-score points. However, the mean score of males who had taken 4 mathematics courses exceeded that of comparable females (those who nad taken 4 mathematics courses) by 1.95 points.

For toch males and females, trends clearly show increases in ACT mean scores as the amount of relevant coursework increases. These score incraases are especially noticeable in the area of mathematics, where they generally range from $2-4$ standard score points for each additional course. Racial/Ethnic Group. When registering for the ACT Assessment, students are asked to identify their racial/ethnic group. Provision is made for responses in six specific categories: Afro-American/Black, American Indian/Alaskan Native, Whice, Mexican-American/Chicano, Asian-American/Pacific Islander, and Puerto Rican/Cuban/Other Hispanic. There are also "Other" and "Prefer not to respond" categories; however, most examinees indicate membership in one of the six specific categories.

As shown in Table 2, course-taking patrerns differ by racial/ethnic group. The American Indian/Alaskan Native students were least likely to have

Table 2
Percentages of Students Completing College Preparatory

4 or more	4 or more	3 or more	3 or more
English	Marhematics	\cdots	Social Studies

completed the college preparatory curriculum, defined as four years each of English and mathematics and three years each of social studies and natural sciences. Asian-American/Pacific Islander'students were the most likely to have taken at least four years of mathematics and three years of natural sciences. The percentages taking the given amount of coursework varied the most for mathematics (a range of 49 percentage points) and least for social studies (a range of 13 percentage points).

Tables AlO-A13 (in the Appendix) provide a detailed breakdown of mean test scores by racial/ethnic group and number of years of coursework. Consistent, and often large, score differences appear among the six racial/ ethnic groups at all levels of course preparation. (Note: There are a few fluctuations at extreme : : els, probably attributable to small N's.) The Asian-American/Pacific Islander aro White students generally had the highest mean scores; Afro-American/Black and American Indian/Alaskan Native students,..the -lowest. Within each group, there is a clear trend for higher scores to be associated with more coursework, except for the sixth and seventh year of social studies.
...Class .Rank. -- The final analyses were designed to examine the effects of taking --more courses for students at different levels of academic abiliry, defined here as rank in class. As expected, students who ranked higher tended to take morecoursework (see. Table ..3).... This... was especially evident in the areas of mathematics and natural sciences.

Table 3

Percentages of Students Completing College Preparatory Curriculur, by Class Rank

Class Rank	(N)	4 or more English	4 or more Mathematics	3 or more Social Studies	3 or more Natural Science
Top Quarter	(14837)	90\%	74\%	81\%	71\%
Second Quarter	(11082)	88\%	46\%	79\%	48\%
Third Quarter	(4988)	85\%	29\%	76\%	34\%
Fourth Quarter	(512)	83\%	21\%	71\%	29\%

Tables Al4-Al7 (in the Appendix) provide a detailed breakdown of mean test scores by class rank and number of years of coursework. The "Toral" columns show a clear overall relationship between rank in class and test score. However, as was the case when analyses were performed by sex, the mean score differences between students of different class ranks decrease, most strikingly in the areas of mathematics and natural sciences, when the amount of coursework is held constant. For instance, the mean Mathematics Usage test scores of students in the top-and second quarters were-21.32--and 15.13 ; respectively--a difference of 6.16 standard score points. For students in the top and second quarters who had completed four years of mathematics, the mean Marhematics Usage test scores were 20.83 and 16.96 , respectively-a difference of 3.87 points.

DISCUSSION

The findings of this study are clear. On the average, students who have taken more coursework in the college preparatory curriculum areas of English, mathematics, natural science, and social studies earn higher standard scores on the corresponding ACT test.

This does not mean, of course, that studenrs should be encouraged to take additional courses merely to obtain higher test scores. However, the ACT Assessment is ...a curriculum-based examination and previous research has demonstrated that there is a direct relationship between achievement at the college level and ACT test scores. Counselors and orhers should keep these facts in mind when considering the implications of the findings of this report.

The most substantial score increase was in the mathematics area, where the mean score for students completing four courses was almost 10 standard score units higher than that for students ...completing only one course. Comparable figures were 8 standard score units in natural science, 3.5 in English, and 3 in social studies. When more than four courses-were completed, the increases were - _even greater.-..-Higher mean test...scores.- were obtained when more courses in the \therefore relevant area were taken, regardless of gender, racial/ethnic group, or rank in class.

Note that we have no data available on the quality of the individual courses taken-by-the students. We can however, say that quantity of courses influences the group mean scores of students, and that completion of one more course gener-- - ally results in an increase-in the mean test score for that group of students.

18

These findings have implications for the behavior of school counselors and others working with students seeking admission to college. For example, consider the situation of a counselor working with junior high/middle school students who are planning their tentative four-year high school curriculum. The counselor might hypothesize that the relatively flat profiles (see Figure 1) for English and social studies and the contrasting sharply rising profiles for mathematics and natural science reflect the likelihood that English and social studies are frequently learned in environments other than the classroom, such as recreational roading and watching specific :types of television-programs, whereas mathematics and natural sciences are areas where specific course content is obtained primarily in formal sequential classroom experiences. Therefore, this counselor may want to ensure that students take special care to sign up for adequate coursework in mathematics and natural sciences, while remaining sensicive to the need for a balanced curriculum that reflects the students' individual skills, interests, and career plans.
.... It.: might-...be-useful-. for counselors: to be especially attentive to the --coursework patterns of their minority-group students, and to those of female students in the areas of mathematics and science. In some cases, students seeking athletic scholarships and admission to NCAA Division One schools might be alerted to the overall relacionship of coursework to test scores.

At the individual school level, an attempr could be made to identify the specific course-taking patcerns of subgroups of students in each school population to determine their overall academic preparation. Graphic representation of mean ACT scores by numbers of courses taken in relevant content areas might be appropriate in counseling use, if data were available for the students' own school. If gathering of this information is not feasible, some of the data from
this study might be made available to students at the time of deciding on their high school program.

Counselors should, however, recall that the findings described in this report represent group data. It is unlikely that forcing students to take courses in which they have no interest and/or for which they are ill-prepared would have a positive effect on their test scores or - more important - on their underlying academic skills and their attitudes toward education. As always, the individual student's needs and goals should be carefully considered when planning his or her laigh school program.
Suggestions for Further Research. As is so of ten the case, this study raises more questions than it answers. Possibilities for future research include:

1. A study co ascertain whether there is a direct relationship between the amount of coursework taken in high school and performance in college.
2. A study thar looks at the relationship between grades earned in specific courses (e.g., calculus, physics) and test performance. (Recall that this --study only involved numbers of courses taken, and did nor explore the effect - of specific courses or grades.)
3. A study that includes better controls for determining students' level of ability and incerest in particular courses.

REFERENCES

Adventures in American Education (1942). New York: Harper \& Brochers.
Alexander, K. L. \& Cook, M. A. (1982). Curriculd and coursework: A surprise ending to a familiar story. American Sociological Review, 47, 626-640.

Alexander, K. L. \& Pallas, A. M. (1984). Curriculum reform and school performance: An evaluation of the "New Basics." American Journal of Education, 92, 391-420.

Bartell, T. \& Noble, J. (1986, April)..... Changes in-course selection by high school students: The impact of national educational reform. Paper presented at the meeting of the American Educational Research Association, San Francisco.

Brandt, R. \& Dronka, P. (Eds.)(1985). With consequences for all. Alexandria, VA: Association for Supervision and Curriculum Development.

Orlans, H. (1986). On higher standards, minority enrollment, and money. The Chronicle of Higher Education, p. 72.

Schmidt, W.....H. (1983).--High school course-taking: its relationship to achievement....Journal of Curriculum Studies, 15, 311-332.

Sebring, P. A. (1984, April). Course taking and achievement: Findings and implications for ..curricular...policy......Paper..presented at the meeting of the American Educational Research Association, New Orleans.

The National Commission on Excellence in Education. (1983). A nation at risk: The imperative for educational reform. Washington, D.C.: U.S. Government Printing Office.

Wright, D. A., Tomlinson, T., \& Farris, E. (1985). Academic requirements and achievement in high schools 1982 (FRSS Report No. 15). Washington, D.C.: National Center for Education Statistics.

Appendix

22
Mean ACP Scores and Standard Deviatlons by Number of Courses Taken
in Relevant Content Area, by Area (Total Group)

\bar{x}									
$S D$	9.27	11.29	15.11	18.66	21.99	24.25	26.145	11.45	17.50
(N)	5.39	5.51	6.20	6.20	5.79	5.11	5.11	7.41	7.59
	(2085)	(3648)	(6657)	(7715)	(6025)	(3119)	(771)	(1380)	(31400)
Social Studies	\vdots		\vdots	1					

\bar{X}	15.22	16.98	17.92	18.24	18.51	18.41	18.31	15.58	17.84
SD	6.91	7.07	7.03	6.91	6.74	6.72	5.91	7.38	6.99
(N)	(769)	(4983)	(10342)	(8832)	(4040)	(1197)	(240)	(739)	(31142)

Natural Science

\bar{X}	17.43	19.27	22.55	25.36	-	-			
SD	5.33	5.55	5.67	5.27	-	-	-	19.26	21.51
(N)	(2676)	(10134)	(11439)	(6077)	--	-	-	6.59	6.11
								(822)	(31148)

24

Table A2
Sumary Table for Prediction of ACT English Usage Score -October 1985 Seniors

Variable	Degrees Preedon	b-welght (unstandardized)	Standard error	$\begin{gathered} \text { t-statistic } \\ H_{0}: b=0 \end{gathered}$	$\mathrm{P}>1 \mathrm{l}$	Beta weight (standardized)
Intercept	1	10.502	0.238	44.10	. 0001	
English background	1.	1.1 10.404	0.027	14.79	. 0001	0
Class Rank	1		0.027	14.79	. 0001	0.070
	1	1.119	0.043	25.53	. 0001	0.173
HSGPA :	1	1.525	0.028	54.81	000	
$\mathrm{R}^{2}=$				54.81	. 000	0.371

Standard error of estimate $=4.36$

Means and Standard Deviations

Variable	N	Mean	Standard Deviation
English Usage Test	36,543	18.31	5.2
English Background	36,543	3.8	1.3
Class Rank	33,148	1.7	0.8
HSGPA	33,298	5.4	1.2

Means and Standard Deviations

Variable	N	Mean	Standard Deviation
Mathematics Usage Test	36,543	17.12	7.7
Mathematics Background	36,543	3.40	1.8
Class Rank	33,148	1.73	0.8
HSGPA	33,298	5.45	1.2

Table A4

Sumary Table for Prediction of ACT Social Studies Reading Scóre -

 October 1985 Seniors| Variable | Degrees Freedom | $\begin{gathered} \text { b-weight } \\ \text { (unstandardized) } \end{gathered}$ | Standard error | $\begin{gathered} \text { t-statistic } \\ H_{0}: b=0 \end{gathered}$ | $P>151$ | Beta weight (standardized |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | 1 | 10.309 | 0.318 | 32.45 | . 0001 | $\frac{\text { (standardized }}{0}$ |
| Social studies background | 1 | 0.391 | 0.027 | 14.25 | . 0001 | 0.070 |
| Class Rank I/ | $11!$ | 1. 1.634 | 0.063 | 26.05 | . 0001 | 0.184 |
| HSGPA $1!$ | ! 11; | :1.641 | 0.040 | 41.23 | . 0001 | 0.292 |
| $\mathrm{R}^{2}=.20$
 Standard error | stimate | 6.24 | . | | | |

Heans and Standard Deviations

Variable	N	Mean	Standard Deviation
Social Studies Reading Test	36,43	17.52	7.1
Social Studies Background	36,543	3.20	1.5
Class Rank	33,148	1.73	0.8
HSGPA	33,298	5.45	1.2

Table A5

Summary Table for Prediction of ACT Natural Science Reading Score --
October 1985 Seniors

Means and Standard Deviations

Variable	N	Mean	Standard Deviation
Natural Scje:ce Reading Test	$36,543^{\circ}$	21.19	6.2
Natural Science Background	36,543	2.45	1.1
Class Rank	33,148	1.73	0.8
HSGPA	33,298	5.45	1.2

Table 46

English: Mean Scores and Standard Deviations by Number of Courses Taken and Sex

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	NR	Total
Male							
\bar{X}							
SD	14.27	16.70	16.74	18.07	18.34	15.70	17.92
(N)	5.18	4.85	5.28	5.18	5.06	5.74	5.21
	(127)	(76)	(1191)	(8281)	$\ldots(3475)$	(362)	(13512)

Female

\bar{X}	16.34	16.70	17.78	19.12	19.48	17.05	19.06
SD	5.21	5.88	5.12	4.89	4.85	5.51	4.95
(N)	(96)	(74)	(1370)	(11002)	(5046)	(319)	(17907)

Table A7

Mathematics: Mean Scores and Standard Deviations by
Number of Courses Taken and Sex

	1	2	3	4	5	6	7	NR	Total
Male									
\bar{X}	10.14	12.31.	16.14	19.77	22.84				
SD	5.87	5.74	6.28	6.06	22.84 5.65	25.06 5.09	27.42 4.94	12.79 8.00	19.03 7.59
(N)	(751)	(1359)	(2479)	(3321)	(2875)	(1623)	(454)	(645)	(13507)

Female

\bar{X}	8.78	10.68	14.50	17.82	21.20	23.36	25.06	10.28	16.33
SD	5.04	5.28	6.06	6.17	5.79	4.98	5.03	6.64	7.38
(N)	(1334)	(2289)	(4178)	(4394)	(3150)	(1496)	(317)	(735)	(17893)

Table 48

Stcial Studies: Mean Scores and Standard Deviations by
Number of Courses Taken and Sex

	1	2	3	4	5	6	7	NR	Total
Male									
$\overline{\mathrm{x}}$	16.03	18.24	18.75	19.27	19.42	19.31	19.20	16.24	18.79
SD	0.96	7.10	7.09	6.89	6.76	6.83	5.61	7.53	7.02
(N)	(339)	(2110)	(4398)	(3790)	(1764)	(514)	(87)	(389)	(13391)

Female

\bar{X}	14.59	16.05	17.31	17.47	17.79	17.73	17.81	14.86	17.12
SD	6.81	6.91	6.93	6.83	6.64	6.55	6.03	7.14	6.88
$(\mathrm{~N})$	(430)	(2873)	(5944)	(5042)	(2276)	(683)	(153)	(350)	(17751)

Table A9

Natural Science: Mean Scores and Standard Deviations by Number of Courses Taken and Sex

English: Mean Scores and Standard Deviations by Number of Courses Taken and Raclal/Ethnic Group

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	NR	Total
Black							
\bar{X}	13.31	16.10	13.02	14.75	15.26	12.59	14.66
SD	5.54	4.20	4.99	5.34	5.37	4.44	5.36
(N)	(36)	(10)	(123)	(1279)	(464)	(75)	(1987)

American Indian

\bar{X}	-	14.00	14.75	14.62	15.76	10.98	15.25
SD	-	-	5.36	5.92	5.20	5.01	5.77
(N)	-	(1)	(32)	(182)	(51)	(49)	(315)

White

\bar{X}	15.84	17.65	17.76	19.19	19.38	17.80	19.07
$\mathbf{S D}$	4.94	4.89	5.04	4.76	4.78	5.05	4.83
(\mathbb{N})	(159)	(114)	(2220)	(16331)	(7464)	(465)	(26753)

Mexican-
American/
Cbicano

\bar{X}	13.67	14.00	14.69	16.06	16.94		
SD	6.30	-	14.60	16.06 5.38	16.94	16.00	16.11
(N).	-... . (9)	(1)	.(35)	--. 3 (370)	$-(+15)$	(9)	5.38 (539)

Asian/
Pacific
Islander

\bar{X}	13.56	11.60	15.54	. .18 .44	19.08	18.21	18.18
$S D$.5 .96	5.91	.6 .52	5.55	5.41	6.30	5.76
(N)	$\ldots(9)$	$\ldots(10)$	$\ldots .(46)$	$-(407)$	$\ldots(131)$	(19)	(622)

Hispanic

\bar{X}	23.00	19.67	13.46	17.34	18.07	14.56	17.26
SD	-	-1.53	-3.20	-.31	.5 .10	6.05	5.32
(\mathbb{N})	$\because(1)$	$--(3)$	(13)	(159)	(40)	(27)	(243)

Mathematics: Mean Scores and Standard Deviations by Number of Courses Taken and Racial/Bthnic Group

	1	2	3	4	5	6	7	NR	Total
Black									
\mathbf{X}	4.22	7.72	10.60	13.24	16.22	19.19	22.25	8.43	11.75
SD	5.01	5.54	6.39	6.78	5.95	6.93	6.08	7.09	
(N)	(225)	(271)	(419)	(451)	(294)	(143)	(28)	(157)	(1988)

American
Indian

\bar{X}	7.07	10.78	13.10	15.11	20.48	25.54	25.00	8.65	12.74
SD	4.70	6.02	6.62	6.33	6.82	3.45	1.00	6.51	7.79
(N)	(43)	(41)	(71)	(45)	(33)	(13)	(3)	(65)	(314)

Whice

\bar{X}	9.76	11.70	15.56	19.12	22.37	24.50	26.63	11.93	18.02
SD	5.35	5.46	6.09	5.98	5.51	4.87	4.96	7.33	7.38
(N)	(1634)	(3068)	(5745)	(6696)	(5254)	(2703)	(632)	(1002)	(26734)

Mexican-
Asserican/
Chicano

$\overline{\mathbf{X}}$	9.09	9.04	13.54	16.02	19.64	23.07	23.78	9.29	14.94
SD	5.34	4.79	5.59	6.92	5.95	5.43	5.01	4.95	7.38
(N)	(57)	(83)	(99)	(123)	(90)	(42)	(18)	(28)	(540)

Asian/
Pacific
Is lander

\bar{X}		12.69	11.14	15.37	19.84	22.90	25.80	27.44	20.33
SD		6.93	5.99	5.93	6.12	5.87	5.59	5.16	8.52
$(\mathrm{~N})$	\cdots	(13)	$-(28)$	\cdots	(68)	(1.55)	$(1-51)$	(126)	(57)
				\ldots	(24)	(622)			

Hispanic

\bar{X}	9.90	9.76	13.55	18.36	21.77	23.96	25.29	12.94	17.07
SD	4.91	5.66	5.72	6.08	5.31	4.21	3.20	8.87	7.65
(N)	(10)	\cdots	(21)	$-(44)$	$-(-5.5)$	(48)	$\ldots .(24)$	(7)	(34)
		(243)							

Social Studies: Mean Scores and Standard Deviations by Number of Courses Taken and Racial/Ethnic Group

1
123

3
$4 \quad 5$
56
67
NR
Tocal

Black

$\overline{\mathbf{X}}$	9.00	11.35	12.21	13.01	14.47	14.20	13.00	10.36	12.34
SD	5.60	6.02	6.54	6.93	6.79	6.35	5.00	5.56	6.60
(N)	(81)	(361)	(666)	(539)	(194)	(41)	(13)	(73)	(1968)

American
Indian

\bar{X}	12.43	11.47	13.03	14.24	15.10	14.31	-12.33	10.13	12.89
SD	4.79	6.05	7.73	6.93	9.34	8.98	5.13	6.23	7.37
(N)	(7)	(47)	(96)	(66)	(30)	(16)	(3)	(48)	(313)

White

$\overline{\mathrm{X}}$	16.50	17.68	18.59	18.83	18.91	18.72	18.82	17.20	18.49
SD	6.55	6.88	6.76	6.67	6.56	6.55	5.77	7.02	6.73
$(\mathrm{~N})$	(600)	(4179)	(8808)	(7560)	(3582)	(1063)	(209)	(524)	(26525)

Mexican-
American/
Chicano

$\overline{\mathrm{X}}$	11.24	15.09	14.66	15.32					
SD	6.69	6.84	14.66 7.12	15.32 7.08	14.19 6.98	13.85	-	16.00	14.70
(N)	(25).	(93)	(207)	(139) -	(47)	.-.. (13)	-	(8)	$\begin{gathered} 7.06 \\ (532) \end{gathered}$

Asian/
Pacific
Islander
$\left.\begin{array}{lrrrrrrrrrr}\bar{X} & 13.91 & 17.54 & 16.34 & 18.21 & 19.25 & 20.05 & 18.50 & 17.00 & 17.47 \\ \text { SD } & 5.80 & 7.39 & 7.79 & 7.82 & \ldots .7 .66 & .7 .74 & -6.60 & 8.85 & 7.74 \\ \text { (N) } & \cdots & (22) & \ldots(112) & \ldots & (194) & (186) & \cdots & (59) & \cdots(19) & \cdots\end{array}\right)(6)$

Hispanic

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline $\overline{\mathrm{X}}$ \& 15.00 \& 15.26 \& 17.06 \& 17.80 \& 17.34 \& 3.63 \& 3.67 \& \&

\hline SD \& 4.24 \& 6.62 \& . 7.30 \& . 6.49 \& . 7.44 \& 13.63 \& 13.67 \& 12.37 \& 16.32

\hline (N) \& (2) \& (38) \& (66) \& (65) \& (32) \& (8) \& ‥6.03

(3) \& $$
\begin{aligned}
& 6.39 \\
& (27)
\end{aligned}
$$ \& (241)

\hline
\end{tabular}

35

Natural Science: Mean Scores and Standard Deviations by Number of Courses Taken and Racial/Brbnic Group

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	NR	Tocal
BLack						
$\overline{\mathbf{X}}$						
SD	4.93	14.75	17.05	19.79	14.16	16.09
(N)	(218)	5.17	5.39	5.71	5.05	5.66
		(689)	(668)	(307)	(85)	(1967)

American
Indian

$\overline{\mathbf{X}}$	16.55	15.74	20.03	23.09	15.10	17.80
SD	5.07	5.52	5.72	7.12	5.43	6.30
(N)	(31)	(106)	(91)	(35)	(48)	(311)

White

\bar{X}	18.05	19.84	23.03	25.83	20.52	22.08
SD	5.17	5.35	5.43	4.94	6.30	5.86
(N)	(2195)	(8619)	(9874)	(5259)	(581)	(26528)

Mexican-
Anerican/
Chicano

\bar{X}	14.76	16.99	20.87	23.18	18.08	18.92
SD	4.27.	5.72	5.60	5.47	4.65	6.08
(N)	(55)	(215)	(176)	(74)	(13)	(533)

Asian/
Pacific
Islander

\bar{X}	16.35	17.42	22.98	24.72	19.39	22.07
SD	\because	.5 .64	6.33	6.29	5.88	8.07
$(\mathrm{~N})$	(31)	(112)	(252)	(201)	(23)	6.84

Hispanic

$\overline{\bar{x}}$
SD
(N)

18.65	18.13
5.43	5.96
(20)	(54)

20.95
6.52
(80)
22.61
5.81
(61)
$\begin{array}{rr}18.70 & 20.30 \\ 7.13 & 6.40 \\ (27) & (242)\end{array}$

English: Mean Scores and Standard Deviations by

 Number of Courses Taken and Class Rank| 1 | 2 | 3 | 4 | 5 | NR | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Top
Quarter

\bar{X}	18.71	18.71	19.87	20.91	21.26	19.31	20.89
SD	4.40	5.25	4.73	4.35	4.35	5.70	4.42
(N)	(75)	(56)	(1094)	(9412)	\ldots	(4003)	(197)
				(14837)			

Second
Quarter

$\overline{\mathbf{x}}$	14.11	-16.46	16.27	17.25	-17.59	15.61	17.19	
SD	-4.44	-4.90	4.60	$\therefore .53$	4.54	4.47	5.31	4.57
(N)	(80)	(48)	(943)	(6661)	(3089)	(261)	(11082)	

Third
Quarter

\bar{X}	12.62	14.51	13.78	15.20	15.99	14.58	15.21
SD	4.91	5.20	4.48	4.73	4.63	5.03	4.74
(N)	(60)	(41)	(482)	(2929)	(1287)	(189)	(4988)

Fourth

Quarter

$\overline{\mathrm{X}}$	11.50	14.40	13.45				
SD	- 5.98	5.32	-4.95	13.89	5.54	5	14.02
(N)	- (08)	\bigcirc	-(42)	(281)	(142)	4.98 (34)	$\begin{gathered} 5.21 \\ (512) \end{gathered}$

Marhematics: Mean Scores and Standard Deviations by Number of Courses Taken and Class Rank

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	NR	Total
Top									
Quarter									
\bar{X}	11.33	13.31	17.38	20.83	23.55	25.19	27.00	16.84	21.32
SD	6.37	5.70	5.94	5.63	5.05	4.66	4.72	8.50	6.57
(N)	(321)	(809)	(2382)	(3917)	(4019)	(2419)	(665)	(295)	(14827)

Second
Quarter

\bar{X}	9.24	11.11	14.48	16.96	19.35	21.41	23.22	11.27	15.13	
SD	5.20	5.47	5.95	5.88	5.72	4.84	6.00	6.92	6.74	
(N)	(943)	(1723)	(2844)	(2828)	(1581)	(573)	\ldots	(93)	(493)	(11078)

Third
Quarter

\bar{X}	8.31	10.61	12.62	14.86	16.99	19.25	20.75	8.99	12.06
SD	4.82	5.03	5.81	5.95	6.11	6.21	6.36	5.66	6.29
(N)	(722)	(1010)	(1322)	(906)	(398)	(114)	(12)	(499)	(4983)

Fourth
Quarter

$\overline{\mathrm{X}}$	8.22	9.67	12.26	14.89	17.33	17.15	26.00		
SD	5.10	4.98	5.70	5.89	+ 7.57	8.13	26.00	8.53 5.26	11.01 6.28
\ldots (N)	(99.).	(106):	(109) =:	(64.).	(27) --	(13) $=$	(01)	(93)	(512)

Table Al6

Table Al7
Natural Science: Mean Scores and Standard Deviarions by Number of Courses Taken and Class Rank

	1	2	3	4	NR	Total
Top						
Quarter						
\bar{X}	19.52	21.64	24.36	26.29	23.21	25.05
SD	5.24	5.35	5.29	4.86	6.64	5.56
(N)	(708)	(3407)	(6021)	(4372)	(228)	(14736)

Second Quarter

$\overline{\mathbf{X}}$	17.10	18.72	20.97	23.45	18.71	19.94
SD	5.15	5.18	5.32	5.38	5.81	5.58
(N)	(1158)	(4197)	(3938)	(1364)	(319)	(10976)

Third
Quarter

\bar{X}	16.23	17.10	19.49	21.21	16.79	17.88
SD	5.04	5.18	5.41	5.60	5.81	5.48
(N)	(729)	(2292)	(1369)	(313)	(233)	(4936)

Pourch
Quarter

\bar{X}	\cdots	$14.77 \ldots$	16.03	$18.61 \cdots$	20.32	15.55	16.60
SD		5.52	5.27	$6.32 \cdots$	8.11	5.82	5.97
(N)		(31)	(238)	(111)	(28)	(42)	(500)

